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ENCS 533 - Advanced Digital Design 

Lecture 8 

Concurrent and Sequential VHDL 
 

1 Introduction 

This lecture will introduce more features of VHDL, with an emphasis on flow of 

control and synchronisation in time. 

 

2 Concurrent execution 

We have seen that the normal way that statements are processed in VHDL is 

concurrent. So, for example, in the following code 

 
a <= b; 

b <= c; 

c <= ‘1’; 

 

all statements are active simultaneously. A statement is triggered into life when a 

variable on its right hand side changes. Statements that have no variables on their 

right hand side are executed immediately. 

 

So for the above code, the statement c<=’1’ is executed first (because the RHS is a 

literal), then b<=c is executed (because c has a new value) then a<=b is executed 

(because b has a new value). 

 

The order of the statements is completely irrelevant, so the above code would have 

exactly the same function as this: 

 
c <= ‘1’; 

b <= c; 

a <= b; 

 

2.1 Signal assignment always has an associated delay 

It is very important to realise that when we make a signal assignment, there is always 

an associated delay. If we write 

 
a <= b AFTER 10 NS; 

 

then obviously a will take on its new value 10 ns after this statement is executed. If we 

write 
 
a <= b; 

 

then a does not get its new value immediately. VHDL will insert a delay, and will 

interpret this statement as 

 
a <= b AFTER delta; 

 

Delta is an infinitesimally small delay, the smallest time step that the simulator can 

cope with. 

 

So, when VHDL runs the following code 
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a <= b; 

b <= c; 

c <= ‘1’; 

 

this is what will happen 

 

time A b c 

0 U U U 

0 + delta U U 1 

0 + 2 × delta U 1 1 

0 + 3 × delta 1 1 1 

 

At the beginning (time zero) a, b and c all have the value U (uninitialised). At time 

zero, the statement c <= ‘1’ will run. The change to c will not take place immediately. 

Instead, a transition (c gets 1 at time delta) is placed onto the event queue. 

 

The simulator has run out of things to do at time zero, so it increments the time 

variable to the time of the next scheduled event, i.e. delta. At this point c gets its new 

value of 1. This event on c triggers the statement b <= c to execute. This places a 

transition (b gets 1 at time 2 × delta) onto the event queue. 

 

And so on. The important things to notice here is that there must be a delay before a, b 

and c get their new values. This delay has very important implications. 

 

2.3 This delay protects us from logical inconsistency 

Suppose there wasn’t a delay in signal assignment. Suppose that a signal received its 

new right hand side value instantly. How could we interpret this piece of code: 

 
a <= b AFTER 0; 

b <= NOT a AFTER 0; 

 

There is no logically consistent interpretation. By contrast, if we have this 

 
a <= b AFTER delta; 

b <= NOT a AFTER delta; 

 

there is no difficulty at all. If we assume a starting state of a=1, b=1 then the following 

will happen 

 

time A B 

0 1 1 

0 + delta 1 0 

0 + 2 × delta 0 0 

0 + 3 × delta 0 1 

0 + 4 × delta 1 1 

0 + 5 × delta 1 0 
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So at time zero, a <= b executes, and places a transition (a gets 1 at time delta) onto 

the event queue; also and b <= NOT a executes, and places a transition (b gets 0 at 

time delta) onto the event queue. It is only at time delta that a and b will get their new 

values. 

 

So in response to this 

 
a <= b; 

b <= NOT a; 

 

a and b will both oscillate between 0 and 1 with a time period of 4×delta1. 

 

So the delay has rescued us from the logical intractability of our code. Also, if we 

consider what the code means in real life, it is a description of a piece of hardware that 

looks like this: 

 

a b 

 
 

This is a ring oscillator. a and b would both go into oscillation with a time period 

equal to twice the combined propagation delay of the two logic gates. 

 

So the delay that VHDL enforces on signals is also ensuring that our code behaves in 

a way that realistically represents the behaviour of hardware. 

 

3 Sequential execution 

We can, if we want, force VHDL to interpret code sequentially, just as it would in a 

programming language like C. In order to do this, we wrap the code inside a process, 

like this2 

 
PROCESS 

BEGIN 

    c <= ‘1’; 

    b <= c; 

    a <= b; 

END PROCESS; 

 

In this case the statements are executed in sequence one after the other, so c<=’1’  

happens first, b<=c happens next then a<=b happens. Although this may feel familiar, 

since you are used programming languages like C, the consequences of sequential 

execution are quite odd. Let’s compare VHDL with C: 

                                                 
1 Note that we had to assume that a and b had somehow been initialised. If they hadn’t, then the result of 

running our code would have been that a and b would be both stuck at U for ever more. 
2 This process is given as an illustrative example. It would actually be thrown out by a VHDL compiler 

because it doesn’t contain sufficient information about when the process should run. We’ll return to this 

issue in section 5. 
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Assume that initially a=b=c=0 Assume that initially a=b=c=0 

Sequential VHDL: 

 
SIGNAL a,b,c: STD_LOGIC; 

BEGIN 

  c <= ‘1’; 

  b <= c; 

  a <= b; 

END; 

 

C programming language: 

 
int a,b,c; 

{ 

  c=1; 

  b=c; 

  a=b; 

} 

 

In C 

• c=1 runs first, so c is now 1 

• b=c runs second, so b is now 1 

• a=b runs third, so a is now 1 

 

In sequential VHDL 

 

• At time now 

c<=’1’ runs. It places a transition onto the event queue: (c becomes ‘1’ at time 

delta later than now). 

 

• We are still at time now, and 

b<=c runs. 

c has not yet got its new value, and is still at its old value of ‘0’. 

A transition is placed into the event queue (b becomes ‘0’ at time delta later than 

now) 

 

• We are still at time now, and 

a<=b runs. 

b is still at its old value of ‘0’. 

A transition is placed into the event queue (a becomes 0 at time delta later than 

now) 

 

• VHDL runs at out statements to execute at the current time, so the time is 

incremented to the time of the next event on the queue, i.e. delta later. 

 

• The transitions take effect, so a=0, b=0 and c=1. 

 

Because signal assignments cannot take immediate effect, the outcome of the VHDL 

code is different from that of the C code. 

 

This may seem startling, but as we will see later on, this behaviour is a realistic 

reflection of the behaviour of real hardware, and it is important that VHDL should 

behave like this. 

 



 5 

3.1 Variables 

As we implied in lecture 1, a feature of a good hardware description language is that it 

can do anything that a good programming language can. This is especially important 

when writing algorithmic specifications, but is often useful in other situations. 

 

But we have just seen that the behaviour of sequential VHDL is radically different 

from the behaviour of C due to the delayed assignment behaviour of signals. 

Sometimes this is awkward, and we would like to write VHDL that behaves just like 

C. 

 

In order to achieve this VHDL has variables. These are like signals, with the 

exception that assignments take effect immediately. As a result, variables in VHDL 

behave exactly like variables in C. So the following two pieces of code are identical in 

their effect 

 

Assume that initially a=b=c=0 Assume that initially a=b=c=0 

Sequential VHDL with variables: 

 

VARIABLE a,b,c: STD_LOGIC; 

BEGIN 

  c := ‘1’; 

  b := c; 

  a := b; 

END; 

 

C programming language: 

 

int a,b,c; 

{ 

  c=1; 

  b=c; 

  a=b; 

} 

 

In order to remind us that the assignment is instantaneous, variables use the 

assignment operator := instead of the <= operator used by signals. Variable can only 

exist in sequential code. That means that they can only exist inside processes. 

 

5 An example 

To illustrate the different issues involved in structural, dataflow and algorithmic code, 

it will be useful to consider an example. Our example will be an RS latch, as shown 

below. 

 
R

S

Q

NQ

 
 

The entity for this is 

 
ENTITY rs IS 

 PORT ( s, r : IN STD_LOGIC; q, nq : OUT STD_LOGIC); 

END ENTITY rs; 
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Before we go any further, there is one subtlety that must be addressed. When we 

declare a signal as being of mode IN or OUT we restrict the operations that can legally 

be carried out on them: 

• it is illegal to read a value from a signal of mode OUT 

• it is illegal to read a write from a signal of mode IN 

 

In order to build our latch, we need to feed q and nq to the inputs of the NOR gates. 

But q and nq are of mode OUT, so it is illegal to use them in this way. To get round 

this problem, we have to invent a couple of internal nodes, which are used for 

feedback.  

 
R

S

Q

NQ

LQ

NLQ  
 

The values of these internal nodes are then short circuited to the outputs. 

 

The behaviour of the RS latch is as follows: 

R S Q NQ 

0 0 Retains its previous value Retains its previous value 

0 1 1 0 

1 0 0 1 

1 1 0 0 

 

S is the set input, which sets Q to 1. R is the reset input that resets Q to 0. When 

neither set or reset is asserted (i.e. R=0, S=0) the latch remembers the last value of Q. 

NQ is the complement to Q. Normally whenever Q=0, NQ=1 and vice versa. R=1 and 

S=1 at the same time is a condition that should not occur in normal operation (it 

means that we are trying to set and reset the latch at the same time, which doesn’t 

make sense). When this happens Q and NQ will both go to zero, which means that the 

complementarity of Q and NQ has been lost. 

 

5.1 A dataflow architecture 

A suitable dataflow implementation of the RS latch might be 

 
ARCHITECTURE dataflow OF rs IS 

 SIGNAL lq: STD_LOGIC:= '1'; 

 SIGNAL lnq : STD_LOGIC:= '0'; 

BEGIN 

 lq <= '1' WHEN s='1' AND r=’0’ 

  ELSE '0' WHEN r='1' and s=’0’ 

  ELSE ‘0’ WHEN r=’1’ and s=’1’ 

ELSE lq; 

 lnq <= '0' WHEN s='1' AND r=’0’ 

  ELSE '1' WHEN r='1' and s=’0’ 

  ELSE ‘0’ WHEN r=’1’ and s=’1’ 

ELSE lq; 

q <= lq; 

 nq <= lnq; 

END ARCHITECTURE dataflow; 
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5.2 A structural architecture 

A structural version of this would be  

 
LIBRARY gates; 

ARCHITECTURE structural OF rs IS 

 COMPONENT nor2  

  PORT ( a, b: IN STD_LOGIC; c: OUT STD_LOGIC);  

 END COMPONENT; 

 FOR ALL: nor2 USE ENTITY gates.nor2(dataflow); 

 SIGNAL lq: STD_LOGIC:= '1'; 

 SIGNAL lnq : STD_LOGIC:= '0'; 

BEGIN 

 g1: nor2 PORT MAP ( r, lnq, lq ); 

 g2: nor2 PORT MAP ( s, lq, nq ); 

 q <= lq; 

 nq <= lnq; 

END ARCHITECTURE dataflow; 

 

The above listing assumes that there exists a library called gates, which contains a 

gate nor2 with a dataflow architecture.  

 

5.3 A sequential description 

Suppose we use a sequential behavioural description. This would be written with a 

sequential piece of code, and would function just like a piece of C code. The 

behaviour of the latch would look like this 

 
 IF r='1' AND s='0' THEN 

  q <= '1'; 

  nq <= '0'; 

 ELSIF r='0' AND s='1' THEN 

  q <= '0'; 

  nq <= '1'; 

 END IF; 

 

But when would this sequence of statements be executed? Sequential statements are 

executed in sequence, one at a time. The above code would be executed when its turn 

comes, after the preceding statements have been executed. The code would not be 

triggered by a change in r or s. 

 

This is not what we want at all. Although we want this piece of code to be executed 

sequentially, we want its execution to be triggered by an event on r or s. 

 

5.4 Processes 

The triggering of sequential code is handled by means of a sensitivity list given to the 

process. This is illustrated below. 

 
ARCHITECTURE sequential OF rs IS 

BEGIN 

 PROCESS ( r, s ) 

 BEGIN 

  IF r='1' AND s='0' THEN 

   q<= '1'; 

   nq <= '0'; 

  ELSIF r='0' AND s='1' THEN 

   q <= '0'; 

   nq <= '1'; 
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  ELSIF r='1' AND s='1' THEN 

   q <= '0'; 

   nq <= '0'; 

  END IF; 

 END PROCESS; 

END ARCHITECTURE sequential; 

 

The PROCESS statement has a sensitivity list ( r, s ). Any change on any signal in the 

sensitivity list triggers the execution of the process. Within the process, execution is 

strictly sequential. The process runs until it reaches the END PROCESS. It will then 

be dormant until another event occurs on its sensitivity list. 

 

5.5 Processes without sensitivity lists: the WAIT statement 

A process does not have to have a sensitivity list. There are other ways of controlling 

its execution. A PROCESS without a sensitivity list runs automatically from the start 

of the simulation. A process runs until it reaches the END statement, and then 

immediately resumes at its BEGIN. So 

 
PROCESS 

BEGIN 

 Statements go here 
END PROCESS; 

 

Would run forever in infinite loop, which will rarely be useful. However, we can tell a 

process to suspend its operation until a condition becomes true. This is done by means 

of a WAIT statement. There are four types of WAIT statement: 

 

WAIT FOR a certain amount of time 

WAIT ON sensitivity list 

WAIT UNTIL some Boolean condition is satisfied 
WAIT 

 

So our above example could have been written like this 

 
ARCHITECTURE sequential OF rs IS 

BEGIN 

 PROCESS 

 BEGIN 

  IF r='1' AND s='0' THEN 

   q<= '1'; 

   nq <= '0'; 

  ELSIF r='0' AND s='1' THEN 

   q <= '0'; 

   nq <= '1'; 

  ELSIF r='1' AND s='1' THEN 

   q <= '0'; 

   nq <= '0'; 

  END IF; 

  WAIT ON r, s; 

 END PROCESS; 

END ARCHITECTURE sequential; 

 

The process starts running immediately. When it gets to the WAIT statement, it is 

suspended until an event occurs on r or s. The process then continues, reaches the 

END PROCESS, at which point it immediately returns to its BEGIN statement, 
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5.6 Using variables instead 

As an illustration of the use of variables, we let’s rewrite our algorithmic description 

with variables. 

 
ARCHITECTURE sequential OF rs IS 

BEGIN 

 PROCESS ( r, s ) 

  VARIABLE lq, lnq: STD_LOGIC; 

 BEGIN 

  IF r='1' AND s='0' THEN 

   lq := '1'; 

   lnq := '0'; 

  ELSIF r='0' AND s='1' THEN 

   lq := '0'; 

   lnq := '1'; 

  ELSIF r='1' AND s='1' THEN 

   lq := '0'; 

   lnq := '0'; 

  END IF; 

  q <= lq; 

  nq <= lnq; 

 END PROCESS; 

END ARCHITECTURE sequential; 

 

Variables (in this case lq and lnq) cannot exist outside a process; they must be 

declared as local to a particular process. In order that the results of the process can be 

seen externally, the values of the variables are copied to the signals q and nq; 

 

5.7 Sequential and concurrent conditionals 

The syntax of the IF block is shown below 

 
IF condition_1 THEN 

 sequence of statements 

ELSIF condition_2 THEN 

 sequence of statements 

ELSE 

 sequence of statements 

END IF; 

 

Notice that this assumes a sequential flow of control from one statement to the next. 

So the IF block can only be used inside a process. 

 

In concurrent code, each line stands alone and is triggered into life by a change on its 

RHS. So in order to achieve conditional assignment in a piece of concurrent code, we 

need a version of the IF statement that bundles all the functionality into one (possibly 

quite long) line of code. This is the WHEN statement. 

 

a <= value1 WHEN condition1 ELSE value2 WHEN conditon2 ELSE value3; 

 

Similar issues arise for CASE blocks.  

 
INTEGER n; 

CASE n IS  

 WHEN 0 => z <= '0'; 

 WHEN 1 => z <= '1'; 

 WHEN OTHERS => z <= NOT z; 

END CASE; 
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The CASE is spread across several statements (count the semicolons); it is assuming 

sequential flow of control from one statement to the next. So a CASE block can exist 

only inside a PROCESS. Within concurrent code, a different syntax is used, which 

bundles all the functionality into one statement: 

 
 WITH n SELECT 

  z <=  ‘0’ WHEN 0, 

   ‘1’ WHEN 1, 

   NOT z WHEN OTHERS; 

 

The case statement must exhaustively list all possible values for the its argument. This 

is facilitated by using the OTHERS clause, to indicate everything that has not been 

explicitly listed. 

 

6 Failure of the RS latch 

To complete our treatment of the RS latch, we will look at the failure mode of the 

device. Suppose we have the situation R=1, S=1 simultaneously. This is what 

happens. 

 

R=1 

S=1 

Q=0 

NQ=0 

 
 

Now if R then changes to 0 and S stays at 1, then Q will become 0. If S changes to 0 

and R stays at 1, then Q will become 1. But what happens if S and R both change to 0 

simultaneously. 

R=0 

S=0 

Q=0 

NQ=0 

 
A NOR gate with 0 at both inputs will output a 1, so we get 

R=0 

S=0 

Q=1 

NQ=1 

 
A NOR gate with a 1 at one input will output a zero 
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R=0 

S=0 

Q=0 

NQ=0 

 
And so on. The device has gone into oscillation3. 

 

It is usually the case with memory elements, such as latches and flip-flops, that if 

changes in their control signals are widely separated they will function correctly. But 

if changes in the control signals occur too close together, something bizarre happens. 

For the RS latch, the required time difference between changes in the R and S inputs 

is called the recovery time. If changes in R and S are too close together, this is called a 

recovery time violation. 

 

This sort of failure can also happen in the D-type flip-flop. If the D input changes too 

close to a change in the clock input, the output becomes unpredictable and may 

oscillate. This is referred to as a set-up time violation if D is unstable before the 

controlling clock edge, or a hold-time violation if D is unstable after the clock edge. 

 

It is an instructive exercise to go through all the VHDL descriptions that we have 

developed for the RS latch to see why they do correctly model the oscillatory 

behaviour caused by a recovery time violation. It is essentially due to the fact that 

signals cannot be assigned with zero delay. If we could assign a signal with zero 

delay, or if a variable could live outside a process, then our descriptions would not be 

able to capture the correct behaviour. 

 

8 Summary 

In this lecture we have looked at the following key issues 

• Sequential and concurrent flow of control 

• Synchronisation of sequential and concurrent code 

• Sensitivity lists to control when pieces of code should be executed 

                                                 
3 This oscillation is one of the failure modes of real life RS latches. Alternatively, due to analogue 

effects, the outputs may instead go to an invalid logic level for a random time interval, and then flip 

randomly out into a 1 or 0. This condition is called metastability. 


